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SUMMARY 


The Hall coefficient and the electrical resistivity of tantalum carbide (TaC) were  
investigated along the entire cubic-phase region (about Taco. 74 to TaC1. o) at room tem
perature and at -196' C. At  both temperatures, the Hall  coefficient was negative and 
decreased in magnitude with decreasing carbon content. Near the stoichiometric compo
sition, the magnitude of the Hall  coefficient was  lower at -196' C than at room tempera
ture but approached the room-temperature value at about Taco. 8. The electrical resis 
tivity increased with decreasing carbon content at both temperatures. The temperature 
dependence of the resistivity w a s  small at higher carbon contents and negligible at 

Taco. and lower carbon contents. The magnetoresistivity w a s  too small to be detected. 
The change in resistivity under an applied field of 14.7 kilogauss (1.47 T) w a s  less than 
10-6. 

The results a r e  discussed in terms of current hypotheses on the bonding of the group 
IV and V transition metal carbides and nitrides. Simplified band models cannot be used 
to adequately describe the experimental data of this investigation. 

INTRODUCT10N 

The Hall  coefficient of the group IV and V transition metal carbides and nitrides and 
their solid solutions (all with sodium chloride-type crystal structure) have been investi
gated recently in the hopes of understanding more fully the electronic bonding in these 
materials (refs. 1to 8). The samples in these investigations have been restricted for 
the most part either to compounds of nearly stoichiometric composition o r  to solid solu
tions of nearly stoichiometric components. Some of the authors have then generalized 
about the role of the metal and nonmetal atoms in the bonding as a function of valence 
electron concentration, that is, the number of valence electrons per formula. 



A study related to those previous efforts on stoichiometric compounds and their solid 
solutions is the measurement of the Hall coefficient of the individual compounds as a func
tion of their nonmetal concentration within their single-phase region. The single-phase 
region of these compounds is known to be rather broad. Thus, in contrast to most pre
vious studies, the relation between the number of valence electrons and the bonding can 
be investigated without varying the atomic species or  crystal structure. 

Hall measurements within the homogeneity-phase region of these compounds have 
been reported for titanium carbide by L'vov et al. (ref. 2) and by Golikova et al. (ref. 7); 
for zirconium carbide by Avgustinnik et al. (ref. 8); and for tantalum carbide by us 
(ref. 9). For tantalum carbide, we found the room-temperature Hall coefficient to be 
negative in the cubic composition range Taco. 78 to TaC1. and to increase monotonically 
in magnitude with increasing carbon content. The magnetoresistivity was  too small to be 
detected. 

The present investigation was conducted to determine the temperature dependence of 
the Hall  coefficient and the electrical resistivity of substoichiometric tantalum carbide. 
To this end, Hall  coefficient and electrical resistivity measurements were made at 
-196' C on samples spanning the entire single-phase region (about Taco. 74 to TaCl. o). 
For most of the samples, measurements were made at room temperature as well as at 
-196' C. Magnetoresistivity measurements were attempted at -196' C. The results are 
discussed in terms of current hypotheses on the bonding of the group IV and V transition 
metal carbides and nitrides. 

EXPERIMENTAL PROCEDURE 

Tantalum carbide ribbons (19 by 0.32 by 0.0025 cm) were prepared as in the first 
investigation (ref. 9) by heating strips of tantalum foil in measured amounts of research-
grade propane for 6 hours at about 2000' C. The purity of the tantalum was at least 
99.89 percent. The carbide ribbons prepared in this manner had essentially 100 percent 
density as determined metallographically. X-ray diffraction analyses were made on the 
samples; and from the lattice parameters, the compositions were calculated from 
Bowman's equation (ref. 10). Selected samples were examined metallographically, par
ticularly those with compositions near the lower phase limit where the precipitation of 
another phase is possible (ref. 11). The presence of a very small amount of a second 
phase may not always be detected by X-ray diffraction. 

A direct-current method was  used for making the Hall measurements. The electri
cal circuit was identical to that used in the previous study (ref. 9), and is shown in fig
ure 1. A maximum magnetic field of 14. 7 kilogauss (1.47 T )  and current densities up to 
1.24X106 amperes per square meter were used. The method of sample mounting had to 
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Figure 1. - Schematic of electrical c i rcu i t  of Hall apparatus. 

be modified to prevent the fragile ribbon sample from fracturing when immersed in 
liquid nitrogen. The modification consisted of the attachment of a thin, flexible copper 
wire to an otherwise unconstrained current contact. This arrangement permitted the 
current contact to move when necessary and thus allowed the sample to contract without 
strain. 

The Hall coefficient and the electrical resistivity were determined along the entire 
single-phase region (about Taco. 74 to TaC1. o). On the majority of samples, these 
measurements were made both ,at room temperature and at -196' C. Attempts were made 
to measure the magnetoresistivity only at -196' C. 

EXPERIMENTAL RESULTS 

The Hall coefficient was  negative over the entire composition range of tantalum car
bide at room temperature and at -196' C (see fig. 2). Thus, electrons are the predom
inant carr iers  for all the compositions tested and at both temperatures. The low-
temperature Hal l  coefficient near the stoichiometric composition is smaller in magnitude 
than the room-temperature value but approaches the room-temperature value at about 

a-
Below Taco. 75, the significance of the Hall  curves is uncertain: Photomicrographs 

of etched samples in the composition range Taco. ,3 to Taco. 75 show very faint 
Widmanstiitten striations. These striations indicate the presence of Ta2C precipitate 
(ref. ll), although only TaC reflections were observed in the X-ray diffraction patterns. 
The room-temperature Hall  coefficient of Ta2C was determined previously to be 
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Figure 3. - Electrical resistivity as funct ion of 
composition. 

-15. ~ x I O - ~cubic centimeter per coulomb (ref. 9). Thus, a few percent of TazC in the 
low-carbon samples would be sufficient to change the slope of the room-temperature 
curve significantly. Therefore, only that portion of the data above Taco. 75 is known to 
be characteristic of the TaC phase. 

The room- temperature value of the Hal l  coefficient for the stoichiometric carbide is 
- ~ M O - ~cubic centimeter per coulomb. This value is in excellent agreement with that 
reported by L'vov et al. (ref. 2), Samsonov and Paderno (ref. 4), and Piper (ref. 5), 
but not with Tsuchida et al., who reported - 6 . 4 ~ 1 0 - ~cubic centimeter per coulomb 
(ref. 1). Piper (ref. 5) found a slight increase in the magnitude of the Hall coefficient 
for stoichiometric tantalum carbide with decreasing temperature. It is not possible from 

'the data in figure 2 either to verify or to contradict the temperature dependence found by 
Piper. The steep slope of the low-temperature Hall curve near the stoichiometric com
position prevents an accurate extrapolation of the curve to TaC1. o. 

The electrical resistivity incregses with decreasing carbon content at both tempera
tures (fig. 3). Only a small temperature dependence of the electrical resistivity occurs 
at carbon contents higher than Taco. and practically no temperature dependence exists 
at Taco. and lower carbon contents. In spite of the scatter in the data, the relation 
between the two curves at a given composition is real since in most cases measurements 
were made at both temperatures on the same sample. Assuming the carbon vacancies to 
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be essentially temperature-independent scattering sites, we interpret these data as 
carbon vacancies that strongly influence the conduction process above Taco. 8 and dom
inate the process for lower compositions. The resistivity variation with temperature 

, 


and composition found here agrees well with the findings of Steinitz and Resnick (ref. 12). 
Dubrovskaia et al. (ref. 13) report the same qualitative variation with temperature and 
composition but their values a re  higher. 

The magnetoresistivity was  too small to be detected. The measured value of the 
ratio of the change in specific resistance, for a change in magnetic field of 14.7 kilo-
gauss (1.47 T), to the specific resistance was less  than 10-6. 

DISCUS SION 

Many previous investigators have assumed that the band structure of the group IV and 
V transition metal carbides and nitrides have the same fixed shape and that their proper
ties can be approximately accounted for merely by adjusting the height of the Fermi level 
according to the valence electron concentration, that is, the number of valence electrons 
per formula (refs. 5, 14, and 15). The density of states is assumed to increase as 
valence electron concentration is raised from 8 to 9. An increasing density of states 
implies an increase in carrier concentration with valence electron concentration. For a 
single car r ie r  model, the Hall coefficient should then decrease as valence electron con
centration is increased from 8 to 9. 

Such a variation of the Hall  coefficient with valence electron concentration has been 
observed by Piper (ref. 5) for the group IV and V transition metal carbides and nitrides 
and their solid solutions. Nonstoichiometric compositions of TaC should, according to 
this model, vary in the same way since i ts  valence electron concentration can be varied 
from 8 to 9 (Taco. 75 to TaC1. o). Thus, the magnitude of the Ha l l  coefficient should 
decrease with increasing carbon content. But this prediction is opposite to the experi
mental observations of t!e present report (see fig. 2). Furthermore, carr ier  densities 
of the lower carbon samples calculated from the one-carrier model are abnormally 
greater than the usual metallic car r ie r  densities. Thus, the common practice of relating 
the properties of the group IV and V transition metal carbides and nitrides by merely 
adjusting the height of the Fermi level in a fixed band shape is not consistent with the 
experimental findings herein. 

Recent theoretical calculations by Ern and Switendick (ref. 16)for titanium carbide 
and .titanium nitride and by Lye and Logothetis for titanium carbide (ref. 17) predict a 
very complex band structure for these compounds. The bonding is a mixture of metallic, 
covalent, and ionic contributions; and a small variation in the concentration of the non
metal atom changes the band shape. Thus, the failure of any simplified model to predict 
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the variation of Hall  coefficient with the valence electron concentration on these com
pounds is understandable. 

In spite of the complexities in the band model, a qualitative statement regarding the 
behavior of the density of states of tantalum carbide may be made. If one assumes a 
model in which the ratio of electron and hole mobilities is relatively constant under com
position and temperature changes and notes that the Hall coefficient is essentially inde
pendent of temperature at low carbon content (near Taco. 8) but changes at higher carbon 
content, one may hypothesize that the slope of the curve of density of s,tates against car
bon content increases with carbon content. Such a conclusion is consistent with the mag
netic behavior of tantalum carbide reported in references 12 and 18, where the suscep
tibility increases nonlinearly with carbon content. Thus, a density of states, small at 
low carbon concentration and larger at high carbon concentration, is consistent with the 
Hall and resistivity data reported herein. The linear behavior of the susceptibility 
reported by Bittner and Goretzski (ref. 19) does not support this density-of-states hypoth
esis. The susceptibility data points reported by Dubrovskaya and Matyeyenko (ref. 20) 
are nonlinear in support of this hypothesis, but these authors chose to represent their 
data by a straight line. 

CONCLUS IONS 

This investigation was  conducted to determine the temperature dependence of the 
Hall coefficient and the electrical resistivity of substoichiometric tantalum carbide. 
Measurements were made at room temperature and at -196' C on samples spanning the 
entire cubic-phase region (about Taco. 74 to TaC1. o). From these experiments, the 
following conclusions were made. 

The one-carrier model for the Hall  coefficient is not adequate for describing non
stoichiometric tantalum carbide. This conclusion reaffirms that of the previous report. 

The practice of relating the properties of the group IV and V transition metal car
bides and nitrides by merely adjusting the height of the Fermi level in a fixed band shape 
is not consistent with the experimental findings of this investigation. 

If the ratio of the carr ier  mobilities is assumed substantially independent of carbon 
concentrations and temperature, the experimental results suggest that the slope of the 
density-of-states curve varies from .a low value at low carbon content to a higher value 
at higher carbon content. 
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Carbon vacancies greatly influence the conduction process throughout the tantalum 
carbide (TaC) single phase; at Taco. 8 and lower carbon contents, the vacancies domi
nate the conduction process. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, July 21, 1967, 
129-03-04-01-22. 
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